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Abstract—Unbounded growth of heap memory degrades
performance and eventually causes program failure. Tra-
ditional memory leaks are the most commonly recognized,
but not the only cause of this issue. Large software systems
use many aggregate data structures that can grow arbi-
trarily, and application behavior that produces unbounded
growth of these structures is common. This growth can
remain undetected by both memory leak and staleness
detection tools. In this paper, we present an approach
for reliably identifying aggregate data structures that can
grow without bound over the lifetime of a program. Our
solution tracks all aggregates over the lifetime of the
program and utilizes heuristics to identify non-convergent
growth. Our diagnostic method continuously reduces false
positives and false negatives during execution, producing
more accurate reports for as long as it is allowed to
continue execution. In addition, we present techniques to
utilize this method in large, pre-existing C++ software
without requiring extensive code modification. Our tool
identified data structures with this issue in Google’s
Chrome web browser and Apple’s Safari browser among
others.

Keywords-C++; memory leak; memory tumor; memory
bloat; data structures

I. INTRODUCTION

A great number of software programs contain mem-
ory management errors that cause them to continually
increase memory allocation over time, causing per-
formance decline and eventual program failure. These
problems can be difficult to detect during testing due to
how long it can take to exhibit overt symptoms. They
can also be difficult to diagnose, as the final allocation
that crashes the program is not necessarily related to the
error.

A well-known cause of this problem, known as a
memory leak, is when the program fails to deallocate
memory that is no longer referenced. This prevents
the program from recycling unused memory for new
allocations, resulting in increased allocations over time.
Memory leaks are not relevant in garbage-collected
languages, and are easily diagnosed by allocation-

tracking tools in languages without dynamic garbage
collection [7], [13], [16].

The term memory leak is typically expanded to in-
clude many other forms of memory mismanagement [3],
[8], [12], [21], [22], with some authors using different
additional adjectives to distinguish their properties [11],
[14]. We find it useful to distinguish the common forms
of memory mismanagement, and with greater brevity.
When all references to a memory block are lost, we
refer to this as a memory leak, as is traditional. However,
it is sometimes the case that references are retained
to a finite block of memory that is no longer needed
for the remainder of the program. We refer to this as
a memory cyst. If the program’s behavior is such that
retained memory blocks can accumulate without bound,
we refer to this as a memory tumor. Observing that cysts
generally will not cause programs to run out of memory,
we focus solely on detecting and diagnosing tumors,
which are of particular concern due to their threat to
program stability.

Tumors by their nature must be an instance of an
aggregate data structure which can reference a variable
number of allocations or be reassigned to a variable size
allocation. Examples of aggregates include sequences,
trees, and hash tables. When an aggregate grows without
bound during the course of a program’s execution,
it causes long-term instability similar to a memory
leak. The fundamental cause could be anything from
improper maintenance of the aggregate to a program
design error. The methods presented here identify the
specific aggregate instances that exhibit unbounded
growth at run time, allowing software engineers to
correct the problem in the context of their work.

We perform dynamic tests in which the target pro-
gram is run continuously in an automated mode, cyclicly
utilizing sample inputs and program features. During
this process, the software performs periodic queries of
each aggregate’s size. In C++, this requires modifying
the source code to track all aggregate data structures in



a program and to allow querying their size in a universal
way. A heuristic is then used to identify tumors using
the size history of aggregate instances. Our method
reports periodically and becomes more accurate the
longer it is allowed to run, reducing false positives and
false negatives continuously.

II. METHOD OVERVIEW

While the target program is running, the tracking
framework must maintain a data structure, the central
aggregate tracker (CAT), containing references to all
other aggregates in the system. When an aggregate is
instanced, it must be added to the CAT, and it must be
removed when it is deallocated. In addition, there must
be a means for all aggregates in the system to respond
to a query of its size during traversal of the CAT. This
can take the form of dynamic binding, a common base
class for all aggregates, or a common abstract interface.

While the application is being tested, the CAT is
periodically traversed in order to generate a snapshot
of the size of the program’s aggregates, which serves
as input data to the heuristic. We provide a detailed
implementation that requires minimal source code mod-
ification for C++ programs in Section III.

In addition to maintaining the CAT structure, the
target program must be setup to run in a continuous,
automated test mode. This mode executes the program
indefinitely in order to exercise the code paths and
data structures in the system. Its design is application-
specific, but we provide suggestions in Section V.

The final component of the framework is the heuristic
used to detect unbounded growth, discussed in Section
IV-B.

Although the method described is applicable to other
languages, our framework, GrowthTracker, was de-
signed and implemented in the context of C++, and
many of the problems and solutions herein will be
specific to that language. The framework was developed
in order to diagnose a memory management problem in
a complex C++ software installation intended for several
months of continuous execution without intervention.
In addition, we have used this framework to diagnose
unbounded heap growth problems in several widely-
used software systems such as the Chrome [17] and
Safari [18] browsers, the Ogre3D graphics library [15],
and others. Our testing indicates that this problem is
very widespread, as almost all of the software tested
exhibited some problems with unbounded heap growth.

III. C++ IMPLEMENTATION

Our design is dictated by the constraint that manual
modification of C++ source code is infeasible for large

systems. Driven by this constraint, this section discusses
injecting size tracking behavior into all aggregates in the
target software.

A. Aggregate Behavior Injection

In order to inject additional behavior into aggregates,
we employ two strategies: the first applies to preexisting
libraries such as STL and boost [4] containers, while the
second is more convenient for custom aggregates that
developers can directly modify.

Dealing with library aggregates that should not be
modified requires developers to switch aggregate types
being employed in their software. We have predefined
small wrapper classes for STL and boost containers that
derive from those containers and provide the additional
tracking functionality. Utilizing them merely requires a
textual search-and-replace to alter include and names-
pace declarations referring to these containers. The ma-
jority of the wrapper class’ implementation is universal
for all aggregates, and uses multiple inheritance to
provide additional functionality transparently. If desired,
developers can reuse this pattern for additional custom
aggregates by writing more wrapper classes following
a similar pattern. Alternatively, custom data structures
can simply be derived from our base tracking class,
which will provide similar functionality without type
or namespace declaration changes.

Note that, using either method, the development work
required to integrate these tools is a small modification
to each aggregate type being utilized. Due to software
reuse, large projects tend to have few unique custom
data structures, making this task more or less indepen-
dent of the size of the project itself. In addition, once
these changes are made, GrowthTracker is designed to
be turned on as needed as a compile time option without
incurring this development time cost again (Listing 4).

B. Aggregate Tracking

In this system, every instance of an aggregate will
add itself to the CAT upon construction and remove
itself upon destruction. This is done automatically by
the tracked base base class (Listing 1), which will
also hold information on instantiation order and the
specific type of the aggregate. This is the identifiable
information we are able to gather for each aggregate
quickly and portably. This base class also provides a
function object for querying the number of elements
held in the aggregate.

The tracked impl class binds the aggregate type
to the tracked base class through multiple inheritance,
and provides some additional functionality (Listing 2).
The wrapper class for each aggregate derives from
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tracked impl in order to reuse its functionality and
keep the wrapper as simple as possible. Each wrapper
must implement constructors that simply initialize the
tracked impl base class with the same parameters. The
tracked impl base class uses templated constructors
for generality. Aggregate wrappers can potentially use
templates to ease the task of overriding all constructors,
but must explicitly override all one-argument construc-
tors to avoid unexpected type conversions and infinite
recursion, in the copy constructor case. New aggregates
must then use the new tracked namespace in their type
definitions. This three layer approach is demonstrated in
Listings 1 - 4, which present an example implementation
of a tracked STL map class. The code shows a sim-
plified implementation that excludes support for mul-
tithreading, and call stack tracing options. Additional
implementation options are discussed below.

1) C++11 Feature Alternatives: C++11 provides
the function and bind implementations presented in
tracked base and tracked impl, which are used to
provide call-back functionality for querying aggregate
size from the CAT. This section presents a couple
of alternatives to this reliance on C++11. The boost
libraries [4] provide the necessary functionality with
their function0 and bind implementations. These imple-
mentations are header based and require no linking, but
nevertheless create a dependency on third party code.

Another solution is to use a pure virtual size function
in the tracked base class which is implemented in the
tracked impl class by querying the overridden data
structure. In practice, this is the approach we used most
often, since the majority of the open source projects
we targeted were not configured for C++11. However,
this solution can cause compilation problems with the
non-standard practice of using incomplete types as tem-
plate arguments for some standard containers [1]. The
forward declaration of template arguments for standard
containers, such as vector, is not officially supported
by the C++ standard. However, most compilers support
the practice, and the desire to reduce compile times has
encouraged its inclusion into some software projects.
Once the tracked wrapper instance replaces the original
data structure, the forward declaration of the template
argument is no longer sufficient for compilation, and
the argument’s definition must be included. In practice,
this side-effect can defeat our goal of requiring minimal
non-automated source code changes.

2) Aggregate-Identification Options: Using portable
C++ language features, combined with the restriction
against non-automated source code modifications, we
are limited to identifying aggregates by their full type

and instantiation order. We have found this to usually be
sufficient, but applications that reuse specific aggregate
types extensively and exhibit non-deterministic instan-
tiation behavior may require more specific data. Non-
portable techniques to acquire this information without
non-automated source code modification exist, although
these impose some run-time overhead.

We have used StackWalk64 on Windows and
backtrace with gcc to gather run-time call stack infor-
mation. The performance implications of gathering and
storing this additional metadata depend on the frequency
of aggregate creation in a particular piece of software.
Section VI-D compares the run-time overhead of var-
ious stack tracing options for some high-performance
software.

IV. GROWTH TRACKING & DETECTION

In this section we build upon the aggregate tracking
foundation in order to detect unbounded growth among
all the aggregates present in the target software. We
first offer a naive approach to growth detection that
demonstrates the power of the CAT. We then present
a growth tracking heuristic that vastly improves on the
naive approach in several ways.

A. Naive Growth Detection

With access to the CAT, a simple approach to identify
growing aggregates follows.
Every 5 minutes do:

for each agg in CAT:
if agg.query_size() > agg.previousSize:

Print agg’s metadata
agg.previousSize = agg.query_size();

This method, when coupled with a cyclic test, iden-
tified tumors in the software we targeted. However,
this naive heuristic has the following problems: 1.
Comparing with previous size will detect growth caused
by size oscillation. 2. A constant time period will only
catch a slow-growing tumor periodically. 3. Finitely-
growing aggregates will be reported many times.

The prevalence of false positives and negatives can
be greatly reduced by the heuristic given in Section B.

B. Reporting Heuristics

The goal of the testing heuristic is to identify data
structures that grow without bound during a program’s
execution. Given a series of size samples for all aggre-
gates in the program, there are many potential heuristics
to employ using rate of growth, consistency of growth,
size, number of growth events, etc.

We propose analyzing a data structure’s history as
consisting of two intervals. In the initial interval, the
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Listing 1: Aggregate base class maintains CAT

1 #include <functional>
2 static int alloc_count = 0;
3 static std::set<tracked_base*> CAT; // simple CAT implementation
4 struct tracked_base{
5 std::string typeName;
6 int id;
7 int sizeMaximum;
8 std::function<int (void)> sizeFunc;
9 tracked_base( const char * _typeName, std::function<int (void)> sizeFunc_ )

10 : typeName(_typeName), id(alloc_count++), sizeMaximum(0), sizeFunc(sizeFunc_){
11 CAT.insert( this );
12 }
13 ˜tracked_base(){ CAT.erase( this ); }
14 int query_size() const{ return sizeFunc(); }
15 void operator=( const tracked_base& ){}
16 };

Listing 2: tracked impl derives from type of aggregate and tracked base, and provides query functionality

1 // this example assumes Type has a size() function.
2 // a full implementation includes multiple argument constructors.
3 #define TYPE_STRING(Type) typeid(Type).name() // avoid RTTI with __PRETTY_FUNCTION__
4 template<typename Type>
5 struct tracked_impl : public Type, public tracked_base{
6 tracked_impl() : tracked_base(TYPE_STRING(Type), size_func()) {}
7 tracked_impl( const tracked_impl<Type>& rhs )
8 : Type(rhs), tracked_base(TYPE_STRING(Type), size_func()) {}
9 template<typename Arg1>

10 tracked_impl( Arg1 a1 )
11 : Type( a1 ), tracked_base(TYPE_STRING(Type), size_func()) {}
12 int type_size() const{ return (int) ((Type*)this)->size(); }
13 std::function<int (void)> size_func(){
14 return std::bind( &tracked_impl<Type>::type_size, this );
15 }
16 };

Listing 3: Need wrapper for each specific aggregate type: tracked::std::map partial definition shown

1 // example tracked stl structure (map).
2 namespace tracked{
3 namespace std{
4 template<typename K, typename V, typename P = ::std::less<K> >
5 struct map : public tracked_impl< ::std::map<K, V, P> >{
6 map() {}
7 map( const map<K, V, P>& rhs ) : tracked_impl< ::std::map<K, V, P> >(
8 (const tracked_impl< ::std::map<K, V, P> >&)rhs ) {}
9 };

10 }
11 }

Listing 4: Namespace switch to enable tracking

1 #if TRACK_ALL
2 #define trackable tracked // trackable::std::map --> tracked::std::map
3 #else
4 #define trackable // trackable::std::map --> ::std::map
5 #endif
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aggregate is expected to change size, potentially in-
creasing and decreasing many times. However, for non-
malignant aggregates, the maximum of its size samples
over time should stabilize to a finite value. In the
second interval, the aggregate proves its stability by not
growing higher than its previous maximum size at the
end of the initial interval. Growth in the second interval
above the previous maximum size indicates a potential
tumor. The use of the highest sampled size, as opposed
to methods that use last sampled size [12], is imperative
to eliminate false positives over time.

With this in mind, we use a simple, two-sample
comparison approach: each sample correlates to the end
of one of the two intervals. If an aggregate’s size in the
second sample is higher than the maximum established
for that aggregate during the first sample, an aggregate
is a tumor candidate. False positives are data structures
that are reported as having unbounded growth when,
in fact, their growth will be bounded. False negatives
are data structures that have unbounded growth but are
not reported. A larger initial interval reduces reported
false positives, as it allows more aggregates to achieve
maturity and a more stable maximum size value. A
larger second interval reduces false negatives by detect-
ing rarer growth events and slower rates of unbounded
growth. Smaller interval sizes have the advantage of
providing immediate feedback and convenience for the
developer.

Rather than forcing the developer to choose interval
sizes, making immediate decisions on running time ver-
sus accuracy level, we propose using a continuous test
in which accuracy improves over time, yet immediate
feedback is also available. In our solution, samples are
taken with an exponentially growing interval size, with
reports being generated at a minimum time (with lower
accuracy) and at each sample thereafter at ever higher
accuracy. Each time a new sample is taken, a report
is generated at the current level of accuracy. Then, the
old second interval becomes the initial interval in a new,
more accurate test. Using this method, the initial interval
size can be small and the choice of initial interval size
is insignificant to the effectiveness of the method.

We report on any aggregates that have grown beyond
their previous maximum size in the second interval.
Young aggregates are excluded by only reporting data
structures with three samples present, ensuring that they
exist for the full two intervals required for an accurate
test. As the test continues, results will exclude more
false positives (due to the increasing initial interval size)
and false negatives (due to the increasing second interval
size). In fact, tumor aggregates can escape detection

only so long as they increase size less often than the
time represented by the second interval. Please refer to
Listing 5 for pseudo code of this heuristic.

In addition to reporting data structures that have
grown in the second interval, we also report more
detailed information on the history of the aggregates
to help focus attention on the most important tumors.
This information includes whether the aggregate had
also grown beyond its maximum size in the previous
interval, the number of intervals in which the aggregate
grew beyond its maximum size (to confirm contin-
uous growth), and the previous and current size of
the structure (yielding its rate of growth). To assist in
diagnostics, we also output the full type of the aggregate
and its instantiation order.

1) Tumor Identification Accuracy: Our experience
indicates that our heuristic accurately identifies all tu-
mors within minutes for most programs. Longer running
times may be necessary in more rare cases. An excep-
tional case, the Chromium project [17], is detailed in
Section VI.

We give developers some control over the prevalence
of false positives by making the test more accurate
over time, and by the detailed history output for each
candidate. Developers can determine how quickly to
intercede based upon the confidence level they want to
achieve before investigating a tumor candidate. In our
experience, we have found that an aggregate with two
consecutive reports using an exponentially increasing
sample duration has been sufficient to identify true
tumors within minutes. However, in some cases false
positives can remain for some time, depending upon
the role of the aggregate. The most common cause of
this is a resource pool, cache, or buffer with a large, but
finite size policy. In such cases, the aggregate will have
to fill before it is no longer suspect.

False negatives may theoretically also remain for
some time in the case of tumors that grow very slowly.
We have not encountered such a case in practice. For
long running tests, the impact of a false negative that
grows very slowly will be low. The faster-growing tu-
mors most likely to cause program failures are detected
more quickly.

It should also be noted that the tracking system cannot
detect tumors from poor tests that do not exercise all
application behaviors. Therefore, tumors may still exist
in software that isn’t tested properly. This is true of all
dynamic leak and tumor detection tools.

V. AUTOMATED APPLICATION TESTING

An automated cyclic test is essential for Growth-
Tracker to maximize reporting accuracy. The test should

5



Listing 5: Pseudo Code for Growth Tracking Heuristic

1 origTimeBetweenSamples = 120; //seconds (adjust as desired)
2 function GrowthTrackingUpdate() {
3 enforcedDurationBetweenSamples = origTimeBetweenSamples*(2ˆnumSamples);
4 durationSinceLastSample += GetTimeDurationSinceLastUpdate();
5 if( durationSinceLastSample >= enforcedDurationBetweenSamples ) {
6 GrowthTrackingSample();
7 durationSinceLastSample = 0;
8 ++numSamples;
9 }

10 }
11 function GrowthTrackingSample() {
12 for each aggregate in CAT { // CAT defined in Listing 1
13 aggregate->sampleCount++;
14 if( aggregate->query_size() > aggregate->sizeMaximum ) {
15 if( aggregate->sizeMaximum > 0 and aggregate->sampleCount > 2)
16 Report aggregate;
17 aggregate->sizeMaximum = aggregate->query_size();
18 }
19 }
20 }

represent complete coverage over the application’s func-
tionality. If all code paths are not included in the com-
plete automated test, there may be problems that remain
undetected by the test. Clearly, a memory problem
cannot be located if it is not exhibited in the test. A test
that exercises all functionality of an application equally
is much more likely to produce good diagnostics quickly
than an unbalanced one. There may, of necessity, be
events that occur less frequently, but ensuring that they
occur cyclically is necessary for GrowthTracker to find
allocation problems with those systems eventually.

Another factor that is just as important: the developer
integrating the test must not miss any aggregate data
types. Every common type that can grow in allocation
size (such as std::string, any STL or boost aggregate,
etc.) should be included in the automated namespace
replacement, and any custom data structures that can
grow likewise requires a similar wrapper or must be
modified to derive from tracked base. Any aggregate
types that are missed will not be detected if they exhibit
unbounded growth.

VI. RESULTS

GrowthTracker was developed to solve memory mis-
management issues in the Scalable City project, a 3D
visual artwork demonstration in the form of a multi-
user virtual world [5]. We created automated avatars
to traverse the virtual world and randomly chose from
all available actions to perform at each step along the
way. Our memory growth issues were caused by a
rare combination of events. Nevertheless, after over 24
hours of automated testing, GrowthTracker reported the

specific data structures exhibiting unbounded growth.
Only the type and instantiation order of aggregates were
reported, but this was sufficient to identify the offending
data structures in minutes.

For further testing of our methods, we applied
GrowthTracker to several public software projects: the
Ogre3D graphics engine, the Bullet physics library,
WebKit, and Google’s Chromium browser.

A. Ogre3D & Bullet

GrowthTracker identified a memory tumor in the
instancing module of Ogre3D [15], a popular open
source graphics rendering engine. This bug, which
caused tumors in GPU memory allocation, had been
present since early 2007 and is therefore present in
many games and other programs. Ogre3D maintainers
have integrated our fix for this bug into the software.

Our tests of the Bullet physics engine [6] dealt with
a subset of Bullet’s available features, but revealed no
growth anomalies in the core physics engine after long
automated tests. GrowthTracker did, however, locate a
tumor in the OpenGLSupport library which provides
visualization for the Bullet Demos. Overall, the result
of the tests serve to increase confidence in the stability
of software developed with the library, which itself is a
valuable result.

B. WebKit

WebKit [19] is a widely used web browser en-
gine (Safari, iPhone, iPad, Android, Kindle). It utilizes
custom data structures exclusively. We created wrap-
pers to track 14 data structure types including Vector,
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HashTable and DoublyLinkedList. Then, we modified
WebKit’s MiniBrowser project to cycle through 100
popular websites every 20 seconds with an initial sample
time of 5 minutes. Over the lifetime of the test, only
three aggregates were reported. Two aggregates were
reported immediately: a Vector and a HashTable of
WebBackForwardListItem. The Vector reached a cap of
100 elements by the third sample and was never reported
again. The HashTable continued to grow at a rate of
one element per web page navigation; a definite tumor.
A search over the source code for the HashTable’s
signature immediately identified the offending aggregate
in the WebProcessProxy class of the UIProcess module.
Upon inspection, we realized that some infrastructure
existed to propagate remove calls from the Vector to
the HashTable in an attempt to enforce the same 100
element limit, but these elements were never removed.
At the time of this writing, we have verified that
the Safari browser uses the WebProcessProxy class of
WebKit and therefore also contains the tumor.

The third aggregate appeared intermittently in the first
few samples, and then consistently in later samples, but
stayed very small, reaching only 38 elements after 21
hours. This aggregate was a tumor whose slow growth
was due to our insufficient testing strategy. Some of
the websites in our test occasionally launched a pop-up
window which was blocked, but the identified aggregate
stored a window handle to each one and never removed
them. This demonstrates the virtue of tracking small
growing potential tumors which others ignore [9], [12].
Additionally, it shows the usefulness of our exponen-
tially growing interval size, which consistently reported
this tumor after the first few samples even though it
was growing infrequently. If a user frequently navigates
to web pages with pop-up windows, then the tumor
will grow quickly and can cause serious problems. This
tumor appears to only affect the MiniBrowser and not
the WebKit core. Tumors may remain in WebKit from
the use of custom aggregates that we may have missed
in the wrapper creation stage. It should be a trivial
task for the WebKit developers to identify the custom
aggregate types utilized in their system.

C. Chromium

The Chromium project is the open source founda-
tion of Google’s Chrome browser. GrowthTracker has
detected 27 tumors in Chromium. We performed a
nearly complete conversion of aggregates in Chromium
svn revision 109290 (November 2011). Our automated
test involved cycling through 1000 popular websites,
loading a new site every 20 seconds. Our initial sample

size was five minutes. Our initial results are shown in
Figure 1.
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Figure 1: GrowthTracker analyzing Chrome browser

While GrowthTracker normally refines a set of can-
didate tumors that quickly becomes stable, this test
yielded an ever-increasing set of candidates. The prob-
lem exhibited is due to specific behaviors of aggregates
within aggregates in this software.

Take the example of a linear hash table [10] imple-
mented using dynamic arrays (e.g. std::vector) for each
bucket. Since our method tracks aggregates individu-
ally, each vector is tracked in addition to the parent
sequence of buckets. In such a structure, the hash table
is optimized to keep the average number of elements in
each bucket small by growing the sequence of buckets
as necessary and rehashing some elements. This causes
random and rare growth and shrinking perturbations in
each vector, as well as allocation of new vectors as the
hash table grows. This is similar to the case being dealt
with in Figure 1. It should be noted, however, that the
metadata output makes it obvious that these aggregates
are small and have grown very little, though the graph
does not reflect this as it only indicates which aggregates
grew in the second interval.

Another potential problem is simply an ever-
increasing number of dynamically generated tumors.
While technically tumors, dealing solely with parent
aggregates is more productive.

We attack these problems in two ways. First, we
apply an additional filter in which the expected growth
rate must be proportional to the interval size. This
eliminates small growth events in sub-aggregates caused
by adding elements to its parent aggregate. Secondly,
we consolidate aggregates with the same type string,
which collapses potentially many tumor sub-aggregates
to a single virtual instance, but may also hide separate
tumors with a duplicate type in some cases. The results
are shown in Figure 2. While useful in the present
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framework, more direct solutions are discussed in Sec-
tion VIII.
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Figure 2: Chrome after corrective post-processing

Output from the last sample (sample #7) is verified
correct manually. In each sample, false positives indi-
cate additional entries not present in the last sample,
while false negatives indicate entries missing compared
to the last sample. It took ten and a half hours of
automated testing to diagnose the 27 tumors present in
Chromium.

While most applications of GrowthTracker are rel-
atively simple, Chromium illustrates potential com-
plications, and methods that may be useful in some
cases. These are recommended only if they are clearly
needed after initial testing. Nevertheless, GrowthTracker
successfully identifies a large number of tumors in
Chromium which have been verified by source code
inspection. A fix for the fastest-growing tumor has been
accepted by the maintainers of the Chromium code base,
further confirming our results. This tumor was present
since the initial release of Chrome in 2008.

D. Overhead

The run-time overhead of our tested aggregate-
identification options for two high-performance sub-
systems are given in Table I. These times include
both aggregate construction and destruction overhead
and scanning operations, though scanning operation
overhead is insignificant. Tests were performed on an
Intel i7 950 machine with 6 GB memory running 64-
bit Windows 7 at 3.07 GHz.

The Ogre3D test was performing skeletal animation,
while the Bullet test was performing physical simu-
lation on a large number of rigid bodies. Note that
the overhead of our methods sans stack tracing, which
we have found viable for most software in practice,
is insignificant. The use of stack tracing, however, can

impose significant overhead for high-performance, real-
time software. The additional time is primarily caused
by the stack tracing steps during aggregate construction,
while the space overhead is mainly due to debugging
symbols loaded during execution.

VII. RELATED WORK

The majority of related previous work in this area
has focused on garbage collected languages such as
Java. Several approaches take advantage of the garbage
collection framework or the JVM to detect memory
cysts and tumors [3], [9], [12], [20]. The great advantage
of utilizing the JVM is that it provides information about
the current Objects in memory and their interrelation-
ships without the need for source code modification.
Native C++ has no such luxury.

LeakBot [12] is the most closely related previous
work. LeakBot requires two temporally spaced snap-
shots that consist of a list of every live Object (Integer,
Character, etc.) in the system including the outgoing
references for each object. It builds two directed object
reference graphs from these lists and compares the
graphs to identify data structures that are potentially
growing. The authors employ some elegant metrics to
determine the root Object of one or more tumors by
considering the age and relationship of child elements.
In their live mode, a tracing agent monitors the child
elements of the identified potential tumors via the JVM
for changes in behavior.

Auto-detection of root aggregates (including custom
aggregates and standard Collections), is a virtue of
LeakBot that would allow GrowthTracker to eliminate
the reliance on the developer to identify custom aggre-
gates and eliminate child aggregate output. However,
LeakBot’s weaknesses include: ignoring all new growth
after the second snapshot, some potential tumors are
eliminated by their metrics, and reports include false
positives and regions that are not growing. Generating
the live Object list that LeakBot relies on in native
C++ applications would require deriving all objects
from a common base class, building a reference graph
between all objects and boxing native types into objects.
It is simply infeasible to apply LeakBot to native C++
applications.

There are a variety of available tools to identify
memory leaks in non-garbage-collected languages such
as C++ [7], [13], [16]. Both memory cysts and tumors
are more difficult to detect than leaks, and few authors
address the problem in the context of static languages
such as C++ [8], [14]. These papers focus on the
more difficult general case of both cysts and tumors
utilizing staleness detection. They do not require source
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Execution Time Increase Virtual Memory Usage Increase

Conditions Bullet Physics Ogre Graphics Bullet Physics Ogre Graphics

No Stack tracing < 1% < 1% 2.7% 4.87%
Stack tracing (4) 96.3% 41.1% 28.7% 64.0%
Stack tracing (6) 126.8% 102.2% 28.8% 64.8%

Table I: Time and space overhead for call stack tracing at call depths 4 and 6

code modification, but only succeed in detection in
specific circumstances, and suffer from high rates of
false positives or false negatives.

Staleness detection [2], [8], [14], [21] is the state-
of-the-art approach for detecting cysts and tumors in
C++ programs. It detects allocated memory that is
not accessed for long periods of time. This approach
has been successful in tracking down some cysts and
tumors, but the scope of possible problems it can find
is limited by design. It is often the case that programs
periodically access the very memory that is causing
unbounded growth. For example, an aggregate that
exhibits unbounded growth could often be traversed for
maintenance, causing accesses to all elements. Another
problem with these methods for C++ software is that
they diagnose staleness at the level of memory alloca-
tions. In C++, several commonly used aggregates can
hold a large number of objects by value within a single
allocation. A single allocation can, therefore, contain
both ‘live’ and ‘stale’ objects. Dynamic arrays, which
are commonly-used, high-performance sequences, ex-
hibit both problems, as all elements are contained within
a single allocation and their copy-on-resize behavior
causes all elements to be accessed. Unbounded ag-
gregate growth can occur in many ways, and does
not necessarily imply discrete memory allocations that
remain unaccessed. GrowthTracker detects unbounded
growth regardless of memory access patterns.

VIII. FUTURE WORK

The method presented for detecting memory tumors
is effective, and together with traditional memory leak
detection tools covers almost all cases of unbounded
memory loss in C++ software. However, our method
does have several weaknesses that could be addressed
more thoroughly.

A weakness of the presented method is its treat-
ment of all aggregates equally, especially in the case
of aggregates containing other aggregates. This causes
anomalous reporting behavior for some structures as
shown in the case of the Chromium project. It also
causes a rare case in which a tumor may not be detected
at all: if a parent aggregate grows by removing its child

and replacing it with a new aggregate of a larger size,
that growth will not be detected by our method.

A more accurate solution would be hierarchical in
nature, assigning the size of child aggregates to their
parent cumulatively. This may be difficult to implement,
would impose additional conversion requirements upon
target aggregates before testing, and may involve addi-
tional trade-offs such as significantly increased sample
time. Nevertheless many of these faults could be mini-
mized or used only in certain circumstances, and would
result in more accurate and universally useful output.

Another weakness is the dichotomy of choice be-
tween lack of complete resolution on identified tumors
and the high run-time overhead of stack-tracing oper-
ations. While our fast method provides the complete
type of the aggregate and instantiation order, it may
not be enough information to locate some aggregates.
The stack-tracing techniques incur an additional run-
time cost but provide full source code location. The
two methods can be combined into a system that pro-
vides complete resolution with fairly low overhead by
automatically excluding most stack-allocated aggregates
from stack-tracing operations, utilizing aggregate life-
time prediction using available history, and providing
a type-based selection functionality to accurately locate
known tumors in a secondary test.

We are designing a multi-layer CAT implementation
that will improve the potential performance impact of
tracking in a multithreaded environment, as access to
the CAT must be locked for aggregate construction and
destruction. This issue is only significant if aggregates
are being instantiated often across multiple threads,
causing threads to wait upon one another to maintain
the CAT.

In order to aid diagnostics, stack traces of insertion
operations could be performed on identified tumors
dynamically after their detection. This would require
overriding insertion methods for custom aggregates,
but could be done automatically for common library
aggregates (e.g. STL, boost).

Finally, a C++ parser could be used to automate the
identification of custom aggregates. While we expect
developers to have a good grasp of custom aggregates
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in their software, further automation would reduce the
potential of incomplete coverage of aggregates.

IX. CONCLUSION

While traditional allocation-tracking tools are effec-
tive in diagnosing memory leaks, continual memory loss
can still occur without leaks due to aggregate growth.
We’ve introduced methodologies and a framework,
GrowthTracker, to detect and diagnose unbounded ag-
gregate growth in C++ software using automated tests.
The methods are very effective, generally having a
continually decreasing false positive rate and a continu-
ally decreasing false negative rate as the tool continues
running. Our method directly tests unbounded growth,
and does not depend upon staleness detection or other
techniques that miss many cases. Our framework oper-
ates within the confines of the portable C++ language,
and requires some source code modification, though this
modification is mostly automated.
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